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We show that for a neutrino factory baseline of L ∼ 7 300 km − 7 600 km a “clean” measurement
of sin2 2θ13 becomes possible, which is almost unaffected by parameter degeneracies. We call this
baseline “magic” baseline, because its length only depends on the matter density profile. For a
complete analysis, we demonstrate that the combination of the magic baseline with a baseline of
3 000 km is the ideal solution to perform equally well for the sin2 2θ13, sign of ∆m2

31, and CP violation
sensitivities. Especially, this combination can very successfully resolve parameter degeneracies even
below sin2 2θ13 < 10−4.

PACS numbers: 14.60.Pq

In neutrino physics, there is now quite strong evidence
for atmospheric and solar neutrino oscillations after the
Super-Kamiokande and KamLAND results [1, 2]. In ad-
dition, the solar LMA (Large Mixing Angle) region is
the only remaining region which can explain the solar
neutrino oscillations [2]. The coupling between the so-
lar and atmospheric neutrino oscillations is described by
sin2 2θ13, which is bound by the CHOOZ-experiment to
sin2 2θ13 . 0.1 [3]. The size of sin2 2θ13 is, together with
the solar ∆m2

21 lying within the LMA region, directly rel-
evant for the detection of three-flavor effects in neutrino
oscillations, such as leptonic CP violation. Three-flavor
and other suppressed effects will be tested in future re-
actor and long-baseline experiments, such as superbeam
and neutrino factory experiments (see, for a summary,
Ref. [4]). Because of systematical errors, superbeams
and superbeam upgrades are limited to sin2 2θ13 & 10−3,
whereas neutrino factories can, in principle, be sensi-
tive to three-flavor effects even below sin2 2θ13 . 10−4.
Thus, neutrino factories are a promising goal in the
long-baseline roadmap. However, it has been demon-
strated that neutrino factory measurements are spoilt by
the presence of degenerate, often disconnected solutions
in the neutrino oscillation formulas [5]. Those are the
(δ, θ13) [6], sgn(∆m2

31) [7], and (θ23, π/2 − θ23) [8] de-
generacies, i.e., and overall “eight-fold” degeneracy [9].
Since the current best-fit value for the atmospheric an-
gle is θ23 = π/4, the first two of these degeneracies to-
gether with multi-parameter correlations strongly limit
future long-baseline experiments [5]. Several options to
resolve this problem have been proposed, such as the
combination of neutrino factories with superbeam up-
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grades [10] and the possibility to detect ντ ’s in order
to have additional oscillation channels with complemen-
tary information [11]. Since one neutrino factory nat-
urally forms two baselines and detectors are relatively
cheap compared to the accelerator complex, the combi-
nation of two baselines to resolve degeneracies seems to
be a straightforward choice. In this work, we will show
that the appropriate combination of two neutrino fac-
tory baselines, where one of those is the magic baseline
Lmagic ∼ 7 300 km − 7 600 km, can resolve the degenera-
cies very competitively, an option which even works for
sin2 2θ13 much below 10−3.

For long-baseline experiments, the appearance proba-
bility νe → νµ in matter can be expanded in the small
hierarchy parameter α ≡ ∆m2

21/∆m2
31 and the small

sin 2θ13 up to the second order as [12, 13]:

Peµ ≃ sin2 2θ13 sin2 θ23

sin2[(1 − Â)∆]

(1 − Â)2

± α sin 2θ13 ξ sin δCP sin(∆)
sin(Â∆)

Â

sin[(1 − Â)∆]

(1 − Â)

+ α sin 2θ13 ξ cos δCP cos(∆)
sin(Â∆)

Â

sin[(1 − Â)∆]

(1 − Â)

+ α2 cos2 θ23 sin2 2θ12

sin2(Â∆)

Â2
. (1)

Here ∆ ≡ ∆m2
31L/(4E), ξ ≡ cos θ13 sin 2θ12 sin 2θ23,

and Â ≡ ±(2
√

2GF neE)/∆m2
31 with GF the Fermi cou-

pling constant and ne the electron density in matter.
The sign of the second term is determined by choosing
νe → νµ (positive) or νµ → νe (negative) as the oscil-

lation channel, and the sign of Â is determined by the
sign of ∆m2

31 and choosing neutrinos or antineutrinos.
This formula shows that close to the resonance condition
Â ≃ 1 especially the first term can be enhanced by mat-
ter effects. Therefore, it is most affected by the sign of
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∆m2
31. In addition, CP effects are only present in the

second and third terms. Depending on which quantity
should be measured, one or two of the terms will act as
signal and the rest of the terms as background. The for-
mula also indicates that the values of sin 2θ13 and the
hierarchy parameter α change the relative weight of the
individual terms, which means that in certain regions of
the sin2 2θ13-α-plane the measurements corresponding to
the selected terms will be favored. For example, for CP
violation measurements both α and sin 2θ13 should be
large, and for the sign of ∆m2

31 and sin2 2θ13 measure-
ments α should be small.

Many of the degeneracy problems originate in the sum-
mation of the four terms especially for large α, since
changing one parameter value in one term can be of-
ten compensated by adjusting another one in a different
term. For instance, changing the sign of ∆m2

31 mostly
affects the first term and can often be compensated by
the second and third terms for a different value of δCP

(“sgn(∆m2
31)-degeneracy”). One strategy to circumvent

this problem is choosing sin(Â∆) = 0, which makes all
but the first term in Eq. (1) disappear and thus allows
a clean measurement of sin2 2θ13 and the sign of ∆m2

31

without correlations with the CP phase [9, 14]. This
condition is, for the first non-trivial solution, equivalent
with

√
2GF neL = 2π, or, in terms of the constant matter

density ρ, for approximately two electrons per nucleon,
equivalent with

Lmagic [km] ≃ 32 726
1

ρ [g/cm3]
. (2)

Thus, it only depends on the matter density, but it does
not depend on the energy and the oscillation parame-
ters. Hence, we further on call this baseline the “magic”
baseline [15]. For a constant matter density, it evaluates
to Lmagic ≃ 7 630 km with the average matter density
of this baseline ρ ≃ 4.3 g/cm3. Numerically, it can be
shown to be closer to Lmagic ∼ 7 250 km for a realistic
PREM (Preliminary Reference Earth Model) profile by
minimizing the δCP-dependence in the appearance rates.
For example, the baseline from Fermilab to Gran Sasso
is magic in the sense of this definition. Of course, the
magic baseline has two obvious disadvantages: first, the
statistics is pretty low at such a long baseline, and sec-
ond, it does not allow a CP measurement, because the
corresponding second and third terms in Eq. (1) are sup-
pressed. We thus propose to combine the magic baseline
with a shorter baseline with better statistics and the abil-
ity to access δCP. In this combination, the magic baseline
would allow a clean measurement of sin2 2θ13 and the sign
of ∆m2

31, and, at the same time, with the shorter base-
line a measurement of δCP without much correlation with
θ13. In the rest of this work, we demonstrate that this
concept also works for a full statistical analysis.

For the analysis, we use the advanced stage neutrino
factory scenario “NuFact-II” from Ref. [5] with a muon
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FIG. 1: The sin2 2θ13 sensitivity limit relative to the opti-
mum value of 5.9 · 10−5 at L1 = L2 ≃ 7 500 km. It is plotted
at the 3σ confidence level as function of the baselines L1 and
L2 heading from the neutrino factory defined in the text to-
wards two 25 kt-detectors. The sensitivity limits in this figure
include systematics, multi-parameter correlations, and degen-
eracies and are computed for the LMA best-fit values as given
in the text.

energy of 50 GeV. It has a target power of 4 MW, cor-
responding to 5.3 · 1020 useful muon decays per year. In
addition, we assume eight years of total running time,
four of these with a neutrino beam and four with an
antineutrino beam. For the detector, we use a mag-
netized iron detector with an overall fiducial mass of
50 kt. However, since a neutrino factory naturally has
two baselines, we split the detector mass into two equal
pieces of 25 kt each and place them at two baselines L1

and L2. The splitting into equal pieces can be justi-
fied by making the problem symmetric or using the same
technology for the two detectors. We use the analy-
sis technique which is described in the Appendices A,
B, and C of Ref. [5], including the beam and detector
simulations. For each baseline, we use a different av-
erage matter density corresponding to this baseline and
allow an uncertainty of 5% on it. Furthermore, we as-
sume the product ∆m2

21 · sin 2θ12 of the solar parameters
to be measured with 15% precision by the KamLAND
experiment by then [16, 17]. We include systematics,
multi-parameter correlations and the degeneracies in the
analysis, as it is described in Ref. [5] for the individ-
ual measurements. For the oscillation parameters, we
choose the current atmospheric and solar (LMA-I) best-
fit values ∆m2

31 = +3.0 · 10−3 eV2, sin2 2θ23 = 1.0 [18],
∆m2

21 = 7.0 · 10−5 eV2, sin2 2θ13 = 0.8 (see, for example,
Ref. [19]), as well as we only allow values of sin2 2θ13 be-
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FIG. 2: The minimum of the χ2-values of the best-fit and degenerate regions as projections on sin2 2θ13 for ∆m2
31 = 3.0·10−3 eV2

(left plot) and ∆m2
31 = 2.0 · 10−3 eV2 (right plot) for the true value sin2 2θ13 = 0 and the neutrino factory described in the

text. The black curves show this function for the combination of the 7 500 km- and 3 000 km-baselines and the gray curves for
the combination of the 4 750 km- and 2 250 km-baselines. The arrows mark the sensitivity limits at the 3σ and 4σ confidence
levels, respectively.

low the CHOOZ bound. Furthermore, we do not make
any special assumptions about δCP, i.e., we let it vary
from 0 to 2π if not otherwise stated.

In order to establish the magic baseline, we need to
demonstrate that the combination of some baseline with
the magic baseline really is optimal in two-baseline-space
(L1, L2), since other combinations with shorter baselines
could be better because of better statistics. Therefore,
we show in Fig. 1 the sin2 2θ13 sensitivity limit, i.e.,
the largest value of sin2 2θ13 which cannot be distin-
guished from sin2 2θ13 = 0, relative to its optimum in
two-baseline space. In this figure, the symmetry axis
corresponds to building both detectors at the same base-
line, i.e., building one large detector instead of two
smaller ones. Indeed, it demonstrates that all com-
binations of baselines, with one of them being magic,
perform very well. The global optimum is in this fig-
ure at about 7 500 km + 7 500 km (1) and two local op-
tima are located at about 7 500 km + 3 000 km (2) and
4 750 km + 2 250 km (3). The first of these three solu-
tions would not help us to measure CP violation since
the magic baseline suppresses the CP-terms in Eq. (1).
The second solution would certainly perform very well for
CP violation, since the 3 000 km-baseline is well-known
to be good for this measurement [12]. The third solu-
tion is somewhat worse than the other two, but espe-
cially interesting since it lies off the magic baseline in the
figure and it is especially favored by statistics because
of the shorter baselines. In Fig. 2, we demonstrate the
weakness of this solution: the (δ, θ13)-degeneracy may or
may not lie below the chosen confidence level. For exam-
ple, the degeneracy is present at the atmospheric best-fit
value, but does not go under the 3σ-confidence level (left
plot). However, it makes the sensitivity already worse
at the 4σ confidence level by almost an order of mag-
nitude. In addition, it is not stable, such that it would

affect the measurement for a worse energy resolution or
energy threshold of the detectors [5], or different param-
eter values, by moving down under the chosen confidence
level. This is illustrated in the right plot for a somewhat
smaller value of ∆m2

31 within the Super-Kamiokande al-
lowed region. Since the magic baseline does not suffer
from this problem, such as it is shown in the plots for
the 7 500 km + 3 000 km combination, we will therefore
not discuss the 4 750 km + 2 250 km option anymore.

In addition to the sin2 2θ13 sensitivity, there are sev-
eral other measurements interesting for a neutrino fac-
tory. In order to demonstrate the potential of the magic
baseline to resolve degeneracies, we choose two addi-
tional representatives: the sensitivity to a positive sign
of ∆m2

31 and the sensitivity to maximal CP violation
δCP = π/2, as they are defined in Refs. [5, 20]. In
Fig. 3, we show the corresponding sensitivity reaches
for the following options: putting the whole detector
mass to the 3 000 km-baseline (3 000 km + 3 000 km) or
the magic baseline (7 500 km + 7 500 km), or sharing the
total detector mass between these two baselines in equal
pieces (7 500 km + 3 000 km). In this figure, the dark
bars come from the variation of the true value of the
solar ∆m2

21 within the 3σ-allowed region as given in the
figure caption, and the arrows correspond to the LMA
best-fit values. This figure demonstrates that the ex-
clusive 3 000 km option is only very good for CP viola-
tion, whereas the sin2 2θ13 sensitivity strongly depends
on the ∆m2

21-dependent ability to resolve the (δ, θ13)-
degeneracy. The sign of ∆m2

31 can hardly be measured
for large values of ∆m2

21 especially due to the sgn(∆m2
31)-

degeneracy [5]. The exclusive 7 500 km option performs
very well for sin2 2θ13 and the sign of ∆m2

31, since at the
magic baseline the first term in Eq. (1) is measured in
a clean way without being spoilt by degeneracies. How-
ever, it does not allow a measurement of δCP because of



4

10-5 10-4 10-3 10-2 10-1

sin22Θ13

Sensitivity reach in sin22Θ13

CP viol.

sgnHDm31
2
L

sin22Θ13

CP viol.

sgnHDm31
2
L

sin22Θ13

CP viol.

sgnHDm31
2
L

sin22Θ13

7500 km+
3000 km

7500 km+
7500 km

3000 km+
3000 km

No sensitivity!

FIG. 3: The sensitivity reaches as functions of sin2 2θ13

for sin2 2θ13 itself, the sign of ∆m2
31 > 0, and (maximal)

CP violation δCP = π/2 for each of the indicated baseline-
combinations. The bars show the ranges in sin2 2θ13 where
sensitivity to the corresponding quantity can be achieved at
the 3σ confidence level. The dark bars mark the variations
in the sensitivity limits by allowing the true value of ∆m2

21

vary in the 3σ LMA-allowed range given in Ref. [19] and oth-
ers (∆m2

21 ∼ 4 · 10−5 eV2
− 3 · 10−4 eV2). The arrows/lines

correspond to the LMA best-fit value.

the suppression of the CP-terms. The combination of the
magic with the 3 000 km-baseline turns out to allow, even
for the worst case of ∆m2

21, very good sensitivities below
sin2 2θ13 . 10−4 for all of the quantities, because all de-
generacies originating in δCP can be resolved. Thus, tak-
ing all the information together, the 7 500 km+ 3 000 km
option allows the best measurement of all of the investi-
gated quantities without the planning risk of not knowing
the exact values of the oscillation parameters.

In summary, we have demonstrated that choosing
a specific neutrino factory baseline, which only de-
pends on the matter density profile, allows a clean,
almost degeneracy-free measurement of sin2 2θ13 and
sgn(∆m2

31). We call this baseline the “magic” baseline,
which is around 7 300 km − 7 600 km, a distance, which
corresponds, for example, to the baseline Fermilab–Gran
Sasso. Since it is also important to have sensitivity
to the CP phase, we find that the natural combina-
tion of two baselines at a neutrino factory favors the
magic baseline combined with a 3 000 km-baseline. Com-
pared to superbeams, this option allows sensitivities to
sin2 2θ13, the sign of ∆m2

31, and CP violation even be-
low sin2 2θ13 . 10−4 (3σ confidence level) for a complete

analysis including systematics, correlations, and degen-
eracies. Since the magic baseline is independent of the
oscillation parameters, it leads to a very precise measure-
ment of the relevant quantities independent of the actual
values of the solar and atmospheric parameters. Thus,
one can start looking for the neutrino factory and de-
tector sites by already knowing at least one of the two
baselines right now.
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